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Intelligence Quotient and Sub-domain Scores 

 

SUPPLEMENTARY FILES 

 

 

Figure S1. Males and females did not differ in age. A total of 360 subjects (174 F/186 M, 19.4 ± 1.1 years, 

in range of 17-24 years) were included in UESTC data set. Specifically, males have a mean age of 19.46 ±1.14 

years, while females have a mean age of 19.35 ± 1.04 years. Two-sample t-test revealed that there is no 

significant difference between them in age (t[358] = 0.9498, p = 0.3429). 

 

S1: COBRE dataset.  

A total of 178 participants with complete imaging data and matching psychological assessment were 

recruited as part of a multimodal schizophrenia center for biomedical research excellence (COBRE) study at 

the Mind Research Network (Sui J et al. 2013) (http://cobre.mrn.org). Due to the fact that UESTC were all 

college students which means a higher education level and IQ scores (p = 8.4×10-4) relative to COBRE 

individuals, 52 Hispanic or Latino subjects were excluded. Six individuals with excessive head motion, 

defined a priori as >2 mm translation, or >3° rotation during the run, were also excluded. Finally, 120 subjects 

(42 females/78 males; 18 – 65 years, mean age = 38.0 years) were retained for further analysis, in which 9 

were diagnosed with bipolar disorder (BP), 51 with schizophrenia or schizoaffective disorder, and 60 HCs. 

Females and males are age- (p = 0.52) and education- (p = 0.61) matched. Participants provided written 

informed consent according to institutional guidelines required by the Institutional Review Board at the 
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University of New Mexico (UNM), and were paid for their participation. All subjects were screened and 

excluded if they had history of neurological disorder, history of mental retardation, history of severe head 

trauma with more than 5 min loss of consciousness, or history of substance abuse, or dependence within the 

last 12 months (except for nicotine). HCs were free from any Axis I disorder, as assessed with the SCID-NP 

(Structured Clinical Interview for DSM-IV-TR, Non-patient version). Schizophrenia or bipolar disorder was 

diagnosed according to DSM-IV–TR criteria on the basis of a structured clinical interview (First MB, Spitzer, 

R.L., Gibbon, M. and Williams, J.B. 1995). All patients were on stable medication prior to the fMRI scan 

session. Symptom scores were determined based on the positive and negative syndrome scale (PANSS). 

S2: Data acquisition and preprocessing 

HCP dataset. Data acquisition has been described in detail elsewhere (Ugurbil K et al. 2013). In this 

study, we used the same main descriptions for data collections that we used in our previous work (Zuo N et 

al. 2018). For the sake of completeness, we repeat these main descriptions for data collection here: resting-

state fMRI data were collected at Washington University in St. Louis using a 3T Skyra (Siemens, Erlangen, 

Germany) with a 32-channel head coil. The primary scanning parameters were repetition time (TR), 720 ms; 

echo time (TE), 33.1 ms; flip angle, 52°; field of view, 208 × 180 mm; slice thickness, 2.0 mm; and voxel size, 

2.0 mm isotropic cube (Smith SM et al. 2013). 

COBRE dataset. MRI scans were performed on a 3-T Siemens Trio scanner with a 12-channel radio 

frequency coil at the Mind Research Network. Briefly, resting state data were collected with single-shot full 

k-space echo-planar imaging (EPI) with ramp sampling correction using the inter commissural line (AC/PC) 

(anterior commissure/posterior commissure) as a reference (TR = 2 s, TE = 29 ms, matrix size = 64 × 64, flip 

angle = 75 °, slice thickness = 3.5 mm, slice gap = 1.05 mm, field of view (FOV) 240 mm, matrix size = 64 × 

64, voxel size = 3.75 mm × 3.75 mm × 4.55 mm. Resting-state scans were a minimum of 5 min, 4 s in duration 

(152 volumes). Subjects were instructed to keep their eyes open during the scan and stare passively at a 

foveally presented fixation cross, as this is suggested to facilitate network delineation compared to eyes-closed 

conditions and helps ensure that subjects are awake. Detailed data acquisition can be found in (Sui J et al. 

2013). 

The HCP data were already preprocessed, well aligned, and registered to the Montreal Neurological 

Institute (MNI) 2-mm standard space when we received it. The main preprocessing steps taken included 

(Glasser MF et al. 2013): (1) gradient nonlinearity distortion; (2) 6 degrees of freedom (DOF) FSL/FLIRT-

based motion correction; (3) FSL/top-up-based distortion correction; (4) registration to a T1 space image; and 
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(5) FSL/FNIRT-based registration to MNI 2-mm space. After receiving the above preprocessed data from HCP, 

we further band-pass-filtered the data at 0.009–0.08 Hz to reduce low-frequency drift and high-frequency 

noise (Vatansever D et al. 2015). The mean signal of the white matter and cerebrospinal fluid (CSF) and the 

movement parameters and its derivatives (in the Movement_parameters.txt file in the HCP S500 release) were 

regressed out as confounding factors. Preprocessing for the COBRE dataset can be found in (Sui J et al. 2013). 

Briefly, the SPM8 software package was employed to perform fMRI preprocessing. The first four volumes 

are discarded to remove T1 equilibration effects. Slice timing was performed with the middle slice as the 

reference frame. Images were realigned using INRIalign, a motion correction algorithm that is unbiased by 

local signal changes (Freire L et al. 2002). Subsequent preprocessing included spatial normalization into the 

standard Montreal Neurological Institute (MNI) space (Friston KJ et al. 1995), temporal band-pass filtering 

(0.01 Hz to 0.08 Hz) and resampling to 3 mm × 3 mm × 3 mm. Before smoothing, we further regress out the 

six motion parameters for each slice to remove the motion effect. Finally, data were spatially smoothed with 

a 8 mm Gaussian kernel. Notably, head motion, calculated as mean frame-to frame displacement (which was 

correlated with IQ scores in the COBRE dataset (r = -0.27, p = 0.002)) was regressed out of the data. 
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Table S1. Prediction results of IQ-predictive models after controlling for potential confounds 

 
Main results Ruling out head motion and age 

Males Female Males Females 

UESTC r= 0.46, p= 3.1×10-12 r= 0.72, p= 3.2×10-29 r= 0.41, p= 9.7×10-9 r= 0.69, p= 9.8×10-27 

HCP r= 0.253, p= 0.02 r= 0.289, p= 0.001 r= 0.281, p= 0.016 r= 0.289, p= 0.001 

COBRE r= 0.23, p= 0.04 r= 0.40, p= 0.008 r= 0.20, p= 0.08 r= 0.39, p= 0.01 

Compared with the discovery dataset UESTC, participants in validation datasets of HCP and COBRE include a wide 

range of age (UESTC: 17 – 24 years; HCP: 22 – 65 years; COBRE: 18 – 65 years). Although age did not show 

statistically significant correlations (p>0.2) with intelligence levels, we nonetheless want to minimize potential age 

confounds in prediction. In addition, in COBRE dataset, head motion (calculated as mean frame-to frame displacement) 

revealed significant correlation with IQ scores (r = -0.27, p = 0.002). Thus, we further calculated the partial correlations 

between the predicted and observed IQ scores while adopting age and mean frame-to-frame motion as control 

measurements. Regarding the discovery dataset, we found that controlling for age and head motion resulted in slightly 

attenuated correlations. With regard to the validation datasets, results indicate comparable prediction performance after 

controlling for these potential confounds, except that male-specific predictive model achieved marginally significant 

correlation for COBRE males. 
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S3: Individualized Prediction and Test of different Regression models:  

We adopted a leave-one-out cross-validation strategy to evaluate the prediction performance, which is 

also the recommended approach named ‘learn-predict separation’ to avoid leakage by (Kaufman S et al. 2012), 

and has been widely employed by most existing prediction studies (Finn ES et al. 2015; Rosenberg MD et al. 

2016; Beaty RE et al. 2018; Reggente N et al. 2018; Yamashita M et al. 2018; Yip SW et al. 2019). In the 

feature selection step, with the ReliefF algorithm (Robnik-Sikonja M and I Kononenko 1997), every training 

feature was assigned with a weight statistically accounting for its relevance to the IQ scores. By determining 

top m weighted features, we can exclude redundant features effectively (Meng X et al. 2017). Note that the 

optimal number of m for ReliefF needs to be determined by the data, and once determined, it remains constant 

across all cross-validation loops. Since we employed a leave-one-out cross-validation approach, a total of N 

(sample size) prediction models were constructed across N loops.  

a) For loop 1, we first selected the top m important FCs determined by ReliefF and enter these m features 

with the corresponding IQ scores into LASSO model across N-1 training subjects, yielding a 

prediction model.  

b) Then, we extracted the same m features from one testing subject and submitted them to the 

constructed prediction model, generating a predicted IQ score for this subject.  

c) Afterwards, we repeated step a)-b) for loop 2, 3…N, until all subjects have a predicted IQ score. 

Notably, the value for m was constant for all N loops. 

To obtain the optimal value, m was tested ranging from 10 to 1000 with a 20 interval, and then ranging 

from 1000 to 10000 with a 50 interval. Stated differently, for each of the tested threshold (10:20:1000, 

1000:50:10000), we repeated the whole prediction procedure a)-c). Consequently, for each of the tested 

threshold, we derived a prediction performance, and the m value that yielded the highest prediction accuracy 

was finally determined as the optimal parameter. As displayed in Figure S3a, an optimal feature number of m 

= 3600, 3300 and 3900 for males, females and all subjects were determined for the prediction. 

Additionally, the feature selection step was adopted to reduce the redundancy, simplify the fitted model, 

and enhance generalization, given that feature dimension in our study considerably overwhelms the sample 

size. The assessment of the effectiveness of features selection really depended on the derived prediction 

performance, since our ultimate goal was to achieve successful prediction of IQ scores with as high as possible 

prediction accuracy.  
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Notably, the determination of m also follows existing studies (Dosenbach NU et al. 2010; Meng X et al. 

2017; Greene AS et al. 2018; Liu Z et al. 2018). Generally, all the above studies employed a prediction 

framework which incorporates a filter-based feature selection method plus a regression algorithm, within a 

fully cross-validated analysis. In the feature selection step, a subset of whole-brain features were selected 

under a predefined threshold. And then these selected features were submitted to a regular regression method 

(LASSO, multiple linear regression, elastic net, support vector regression) to construct a prediction model. 

The optimal parameter was always tested from a series of candidate values, and the value that yielded the 

highest prediction accuracy was finally determined as the optimal parameter. 

In addition, ReliefF assessed the importance of each feature by calculating the relative distance between 

a randomly selected subject and its k neighbor subjects. More details can be found in (Robnik-Šikonja M and 

I Kononenko 2003). Therefore, k is another hyper parameter that needs to be determined. Generally, if we set 

k to 1, the estimates computed by ReliefF can be unreliable for noisy data. If we set k to a big value, ReliefF 

can fail to find important attributes. Empirically, 10 is the most commonly used value, and it is also the 

recommended parameter in Matlab’s built-in ReliefF function. Consequently, we set k to this default value as 

our previously published papers (Meng X et al. 2017; Jiang R et al. 2018). Moreover, we also performed 

additional analysis to explore the influence of k on prediction accuracy for females (Urbanowicz RJ et al. 

2018). Instead of being set as a default values of 10, this time, k values were tested ranging from 10 to 173 

(10, 15, 20:10:80, 100:20:160, 173). Then, for each of the above k values, we rean the whole prediction 

procedure within rigorous cross-validations while ranging m from 3000 to 4000 with a 100 interval. Notably, 

m was not tested from 10 to 10000, because from our main results, we found that the highest prediction 

accuracy was usually achieved between m=3000 to 4000. Supplementary Figure S3b demonstrates the 

prediction results. Overall, our prediction pipeline achieved comparable prediction accuracies when setting k 

to 10, 15, or 20, and a larger k value yielded slightly attenuated prediction performance. Consequently, k exerts 

little influence on the prediction accuracy for our data. 

To compare the prediction performance of different regression algorithms, a total of 4 popular linear 

regression models were used here, including least absolute shrinkage and selection operator (LASSO), ridge 

regression, the Elastic net and relevance vector regression (RVR). Specifically, LASSO applies an L1-norm 

penalty, which minimizes the sum of the absolute regression coefficients. Notably, LASSO achieves a sparse 

model, where at most N features can be selected in the final model (N is the sample size) (Tibshirani R 1996). 

In contrast, the ridge regression applies an L2-norm penalty, which minimizes the sum of the square of the 
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regression coefficients and retains all features in the model. The elastic net uses a combination of L1-norm 

and L2-norm penalties through a mixing parameter α. RVR is a sparse kernel method formulated in a Bayesian 

framework (Zou H and T Hastie 2005). Compared with non-linear models, linear methods can reduce the 

overfitting problem to some extent, and have good performance in interpreting how different features 

influence the prediction. Furthermore, to evaluate the effectiveness of feature selection, prediction procedures 

without ReliefF were also tested for all four regression models, where the whole-brain FCs were used as 

predictions. 

For LASSO, elastic net and ridge regression methods, the regularization penalty is controlled through the 

regularization parameter λ. For elastic net, the mixing parameter α was chosen from 0.1 to 1.0, with a 0.1 step. 

In the training phase, the three algorithms were implemented in a 10-fold cross validation, where the value of 

λ that gives minimum mean cross-validated error was selected by default. Consequently, no parameters need 

to be tuned manually in this step. No parameters need to be determined for RVR. 

For the feature selection method ReliefF, functions provided in the statistics and machine learning 

toolbox in Matlab were used. Compared with the majority of the feature selection measures, ReliefF is able to 

effectively select useful features and has a low computational complexity (Stokes ME and S Visweswaran 

2012). For regression algorithms LASSO, ridge regression and Elastic net, we made use of the Glmnet package 

provided by (Friedman J et al. 2010); for RVR, the kernel methods package Kernlab provided by (Karatzoglou 

A et al. 2004) was employed in R. 
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Table S2: Prediction results of four regression models and results without feature selection. 

Correlation r All subjects Male subjects Female subjects Steiger’s z/p-value 

ReliefF+LASSO 0.5122 0.4622 0.7212 3.86/0.0001 

ReliefF+ridge 0.4787 0.3010 0.4918 2.13/0.033 

ReliefF+elastic net 0.4313 0.2787 0.6481 4.53/<0.0001 

ReliefF+RVR 0.2189 0.1353 0.2359 0.97/0.332 

LASSO 0.3668 0.1678 0.6802 6.28/<0.0001 

Ridge 0.4345 0.1815 0.4295 2.61/0.009 

Elastic net 0.3449 0.1830 0.6655 5.91/<0.0001 

RVR 0.2413 0.0859 0.2609 1.76/0.078 

Table S2 demonstrates the prediction results of IQ scores using 4 regression methods. In the prediction of IQ scores, a 

prediction framework integrating feature selection and regression technique was adopted within a leave-one-out cross-

validation (LOOCV) strategy. To compare the prediction performance of different regression algorithms, a total of 4 

popular linear regression models were used here, including LASSO, ridge regression, the Elastic net and RVR. Due to 

the fact that the number of features selected in ReliefF has an important influence on the prediction performance, we 

performed the LOOCV prediction framework by ranging the feature number applied in ReliefF from 10 to 1000 with a 

20 interval, and then ranging from 1000 to 10000 with a 50 interval. Results provided in the table were all derived with 

the optimal feature number, which can generate the highest correlation r between the predicted and true IQ scores. 

Prediction results using whole-brain FCs without feature selection were also provided. Compared with prediction 

incorporating feature selection, prediction with only regression technique impaired the prediction performance almost 

for all four regression methods. Note that female IQ was always more predictable than males regardless of the type of 

feature selection in all four regression models (p = 0.0045). Moreover, a Steiger’s z-test for testing differences between 

two independent correlations (Steiger JH 1980) revealed that the difference in prediction performance for males and 

females reached significance in most cases (p <0.05). 
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Figure S2. In our main results, female IQ was always more predictable than males regardless of regression 

models employed. To further validate that the difference in predictability was a reflection of actual gender 

difference, which was not influenced by data division, we randomly divided the whole sample (n=360) into 

two halves (n=180) and reran the prediction procedure with each subset within rigorous cross validation. This 

process was repeated 100 times. Notably, to exclude the influence brought by potential confounds such as 

algorithm hyper parameter, as well as to reduce computational complexity, we employed the LASSO approach 

here. In Table S2, we have shown that LASSO achieved a prediction accuracy of r[female]= 0.6802 for 

females, which is significantly higher (Δ=0.5124) than that for males r[male]= 0.1678 (p<0.0001). This figure 

demonstrates the absolute values of Δcorrelations of the prediction performance derived from the 2 randomly 

divided halves (black bar), which are sorted in an ascending order. Apparently, the Δcorrelations between the 

randomly divided subsets (max Δ=0.2005) were much lower than that between males and females (green bar). 

Consequently, the Δcorrelation of prediction performance between males and females was significantly higher 

than that between any 2 randomly divided subsets under 100 permutation test (p<1/(1+100)=0.01).  
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Figure S3. Influence of ReliefF feature number and the number of neighbors on prediction. (a) The number 

of features selected in ReliefF was tested ranging from 10 to 1000 with a 20 interval, and then ranging from 

1000 to 10000 with a 50 interval. Ultimately, an optimal feature number of 3600, 3300 and 3900 for males, 

females and all subjects were determined in the prediction. Interestingly, females exhibit significantly higher 

IQ-predictability than males regardless of the feature number used (p < 0.001). (b) In addition, ReliefF 

assessed the importance of each feature by calculating the relative distance between a randomly selected 

subject and its k neighbor subjects. This was performed only for females.Results demonstrated that our 

prediction pipeline achieved comparable prediction accuracies when setting k to 10, 15, or 20, and a larger k 

value yielded slightly attenauted prediction performance. 
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Figure S4. The direction of the identified feature weights relates to the true direction of the correlations 

between FC and IQ scores. Since we applied a cross-validated prediction strategy to estimate the IQ scores, 

in each iteration, slightly different FCs were selected. Overall, across all cross-validation loops, a total of 451 

and 789 different features were selected for males and females respectively, which were the FCs used to 

estimate the relative feature importance (Figure 4a). We calculated the Person’s correlations R between each 

of these selected FCs and IQ scores for males and females respectively. These R values represent the true 

direction of the relationships between functional connectivity and individuals’ IQ scores, where a higher 

absolute value indicates a greater relevance between them. To assess whether the direction of the feature 

weights calculated from our prediction procedure is consistent with the direction of these R values, we 

calculate the correlations between them. Due to the fact that the feature weights exhibited in a non-normal 

distribution, the Spearman’s correlation was employed here. Results demonstrated a high correlation of 

r[female]= 0.8191, p <10-30 in females, and r[male]= 0.8513, p <10-30 in males (Figure S4a). To exclude the 

influences of feature weights approaching 0, we repeated the above analysis by restricting FCs to those with 

an absolute weight >10 or >50. Overall, results remain substantially unchanged under the threshold of 10 

(r[female]= 0.7955, p <10-30; r[male]= 0.8937, p <10-30; Figure S4b) or 50 (r[female]= 0.9029, p <10-30; 

r[male]= 0.7999, p <10-30; Figure S4c). These results suggested that the direction of the identified FC weights 

also relates to the true direction of the FC-IQ correlations. 

 

  



12 

 

 

Table S3. Consensus functional connections derived from the prediction framework. 

Consensus Functional Connectivity for Females 

Node 1 MNI Node 2 MNI r p 

R. paracentral lobule (10,-34,54) R. middle occipital gyrus (34,-86,11) 0.210 0.005 

L. paracentral lobule (-8,-38,58) R. rostroventral FuG (33,-15,-34) 0.158 0.037 

L. dorsolateral SFG (-18,24,53) L. medioventral FuG (-31,-64,-14) 0.218 0.004 

R. rostrodorsal IPL (47,-35,45) R. rostral STG (56,-12,-5) 0.286 1.27×10-4 

L. caudal SPL (-15,-71,52) L. nucleus accumbens (-17,3,-9) 0.345 3.21×10-6 

R. rostral SPL (19,-57,65) R. rostral IFG (51,36,-1) -0.222 0.003 

L. postcentral gyrus (-21,-35,68) R. posterior thalamus (15,-25,6) -0.289 1.08×10-4 

R. medial orbital gyrus (6,57,-16) L. medial thalamus (-7,-12,5) 0.092 0.227 

L. caudal PhG (28,-8,-33) L. occipital polar cortex (-18,-99,2) -0.256 6.61×10-4 

L. caudal PhG (28,-8,-33) L. inferior occipital cortex (-30,-88,-12) -0.362 9.26×10-7 

R. caudal cuneus (8,-90,12) R. middle occipital gyrus (34,-86,11) -0.304 4.50×10-5 

L. STG, TE1.0/1.2 (-50,-11,1) R. rostral lingual gyrus (18,-60,-7) -0.284 1.49×10-4 

L. rostral MTG (-53,2,-30) R. superior occipital cortex (29,-75,36) 0.198 0.009 

Consensus Functional Connectivity for Males 

Node 1  MNI Node 2 MNI r p 

R. medial SFG (6,38,35) R. medial precuneus (7,-47,58) 0.251 5.48×10-4 

L. dorsal IFG (-46,13,24) R. occipital thalamus (13,-27,8) -0.228 0.002 

L. medial orbital gyrus (-7,54,-7) L. caudal cingulate gyrus (-7,-23,41) 0.244 7.73×10-4 

L. lower limb PCL (-8,-38,58) R. rostral MTG (51,6,-32) -0.213 0.004 

R. lower limb PCL (10,-34,54) R. caudal lingual gyrus (10,-85,-9) -0.184 0.012 

L. STG (-54,-32,12) R. rostrodorsal IPL (39,-65,44) 0.242 8.86×10-4 

R. caudal IPL (45,-71,20) R. middle occipital gyrus (34,-86,11) -0.306 2.15×10-5 

R. occipital polar cortex (22,-97,4) R. rostral temporal thalamus (3,-13,5) 0.233 0.001 
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Prediction results for 10 behavior metrics (7 intelligence and 3 temperament) scores solely based on the consensus 

FCs from the same or opposite gender group for male and female subjects respectively. Here we ran multiple linear 

regression with 10-fold cross-validation, in which the consensus FCs were used as regressors and each of the ten 

behavior metrics was used as the target measure. The process was performed with 100 bootstrapping repetitions with 

subjects randomly shuffled for each of the 10 behavior metrics. Specifically, the results revealed significant correlations 

between the predicted and observed IQ scores for males and females. Regarding the 6 intelligence sub-domains, only 

the digit symbol was not significantly predicted by consensus FCs in females. In both gender groups, no significant 

correlations were achieved for 3 temperament traits. There were no significant prediction results in males when 

predicting any of the ten behavior metrics with female-specific consensus FCs, and neither in females similarly. 

Moreover, similar to the prediction results using whole-brain FCs, females achieved significantly higher accuracies than 

males for almost all 7 metrics (p <0.001) except the digital symbol. 
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